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ABSTRACT

Efficient image representation methods are of great signifi-
cance in image processing. This paper proposes an invertible
deep convolutional network where the entire architecture is
constructed by a decomposition process and a frequency re-
combination process. The decomposition allows frequency
division in both the lower and higher part at the same time
on each layer. It is implemented by using iterated directional
filter banks. Perfect reconstruction is available if we adopt
biorthogonal qincunx filter banks. The remaining frequency
recombination process is adjoined to the architecture to trans-
form the uniform frequency partition to nonuniform one and
thereby increase the efficiency and flexibility. Numerical ex-
periments reveal that the underlying network has good per-
formance especially for images with large amount of fine-
grained information.

Index Terms— Deep convolutional network, revertible,
directional filter banks, nonlinear approximation, denoising

1. INTRODUCTION

With the occurrence of wavelet, the developments of signal
processing have taken a big step forward [1]. The ability to
efficiently approximate signals containing point-wise singu-
larities makes wavelet analysis a powerful tool of represent-
ing one-dimensional piecewise smooth functions than Fourier
analysis. However, it becomes not so powerful when applied
to two or higher dimensional signals.

To this point, multiscale geometric analysis (MGA)
which aims to construct a new optimal representation of
high-dimensional function become a significant subject for
researchers. With the development of MGA [2-4], several
image representation methods have been developed to cap-
ture the geometric regularity of a given image. Curvelet was
initiated in the continuous domain and then discretized for
sampled data. Contourlet transform was stated directly in
the discrete domain and then expanded in the continuous
domain for more mathematical analysis. The main parts of
the contourlet transform are the Laplacian pyramid (LP) and
directional filter bank (DFB). Bandlet aims to provide an
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adaptive representation while edge detection is required, it is
unreliable and noise sensitive as well.

Recently, several new transforms have been proposed
such as the spectral graph wavelet transform [5] and the
scattering transform [6]. The former designs a framework
for constructing wavelets on arbitrary weighted graphs. By
analogy with classical wavelet operators in the Fourier do-
main, it has been shown that scaling may be implemented
in the spectral domain of the graph Laplacian. The spectral
graph wavelets are localized in the small scale limit, and form
a frame with easily calculable frame bounds. A scattering
transform is a deep convolutional network with cascades of
wavelet filters and average operators. The decomposition
of one layer contains a low frequency part and several high
frequency parts with different scales and directions. What
is more, it calculates higher order coefficients by further it-
erating on high frequency parts of the last layer. It attains a
translation invariant representation which is Lipschitz con-
tinuous to deformations. However, the inverse process is not
available.

Motivated by these work, this paper constructs a new in-
vertible deep convolutional network where the decomposition
is realized in both the lower frequency and the higher fre-
quency parts layer by layer. Thereby it provides a good per-
formance on images with much detail information, e.g. tex-
tures. We directly explore it in the discrete-domain and give
its construction with iterated directional filter banks [7]. Sub-
ject to this, perfect reconstruction is available if we set the
kernel qincunx filters to be biorthogonal or orthogonal. A fre-
quency recombinaltion progress is adjoined to the final layer
of the convolution network. The manipulation transforms the
uniform frequency partition to nonuniform one and thus in-
creases the efficiency and flexibility of the network. Good
results have also been achieved in numerical experiments of
nonlinear approximation and denoising.

2. DISCRETRE-DOMAIN CONSTRUCTION

The underlying deep convolutional network architecture is
shown in Fig. 1, which gives a brief overlook of whole oper-
ating procedure.

1586978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



Fig. 1. The network architecture, which illustrates the frequency partition in each step. The operation in the dotted box is
iterated before a frequency combination manipulation. The combinated areas are shown in gray color.

2.1. Multiresolution Directional Filter Bank

If a 2-D signal x[n] where n = [n1, n2]
T is downsampled by

a decimation matrixM , then the discrete Fourier transform of
the downsampled signal xd[u] = x[Mu] is

Xd(ω) =
1

|M |
∑

k∈N (MT)

X(M−Tω − 2πM−Tk) (1)

where N (M) is defined as the set of integer vectors of the
form Mt, where t ∈ [0, 1)2. The number of elements in
N (M) is equal to |M |. For an M-fold upsampling, the in-
put x(u) and the output xu(u) are related by

xu[n] =

{
x(M−1n), if n =Mk

0, otherwise

Xu(ω) = X(MTω).

(2)

Bamberger and Simith introduced a 2-D directional filter
bank (DFB) that could be maximally decimated while achiev-
ing perfect reconstruction [8]. Inspired by the DFB imple-
mentation via a l-level tree-structured decomposition, here
we realize a uniform quincunx DFB whose subband config-
uration is shown in Fig. 1 by a binary tree structure. The
decimated matrix and filters are given in Eq. (3) and Fig. 2.
The frequency spectrum of the input signal can be splited into
a lowpass and a highpass channel through a diamond filter
pair, or into a horizontal and a vertical channel using a fan
filter pair. In fact, the diamond filter can be fulfilled by sim-
ply modulating the fan filter. Combining the supports of these
three filters, we get the desired support configuration.

Q0 =

[
1 −1
1 1

]
, Q1 =

[
1 1
−1 1

]
(3)

Fig. 2. Possible support configurations for the filters in the
QFB. (a) Diamond filter. (b) Fan filter. (c) Quadrant filter

2.2. Architecture
2.2.1. Decomposition by Iterated Filter Banks

From Section 2.1, we know that an eight-directional fre-
quency partition can obtained by a three-level decomposition.
Notice the fact that the complete frequency square after three
levels is uniformly divided into several triangular regions. It
is a significant advantage since the four subblocks in four
conners of the frequency square have the same frequency
configuration type as the quincunx filter. Thus, further de-
compositon on both the lower frequency and high frequency
parts can be achieved by directly repeating the process in the
box of Fig. 1. Instead of iterating the same filter pair layer
by layer which would lead to more directions but same scale,
we iterating two kinds of filter pairs in turn so as to obtain
finer divisions of the frequency square. Therefore fan filter
pairs are adoped in even layers and diamond filter pairs are
adopted in odd layers.

We index the channels of a DFB with l-levels from top to
bottom as 0 to 2l − 1. The channel index k can be associated
with a sequence of path types (t1, t2, ..., tl) of the filter banks
from the second level leading to that channel by

k =

l∑
i=1

ti2
l−i
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With this path type, using the equivalent filter banks, the se-
quence of filtering and downsampling for the channel k can
be written as

H l
k(ω) −→ (↓M l

k) (4)

where

H l
k(ω) = 2HF

t1

l−1∏
i=2

Fti , with Fti =

{
HF

ti , if i is even
HD

ti , otherwise

M l
k =

l−1∏
i=1

Q(i+1)mod 2

The synthesis system is symmetric to the analysis sys-
tem. Similar to the analysis in Eq. (4), we can also transform
the synthesis side into an upsampling operation by the over-
all sampling matrix M l

k followed by an equivalent synthesis
filter Gl

k(ω) to each channel. Then the reconstructed signal is

X̂(ω) =

2l−1∑
k=1

Gl
k(ω)

1

M l
k

∑
k∈N (M l

k
−T)

Hi(ω − 2πM l
k

−T
k)

×X(ω − 2πM l
k

−T
k)

In fact, the reconstruction process is implemented level by
level. It has been proven that the DFB provides a biorthogo-
nal or orthogonal expansion if and only if its kernel quincunx
filter banks are biorthogonal or orthogonal respectively [8]. It
ensures a perfect reconstruction if the synthesis filters is the
time-reversed version of the analysis filters.

Fig. 3. The multi-channel view of a l-level DFB that has 2l

channels with equivalent filters and sampling matrics.

2.2.2. Frequency Recombination

The decomposition in convolutional network using iterated
qincunx directional filter banks has been constructed in Sec-
tion 2.2.1. The full channel decomposition scheme provides
a full frequency partition. This scheme may not be useful and
efficient when it comes to the practical scene since the large
amount of subbands increases the computation cost without
obvious promotion. To this point, we introduce a frequency
recombination process following the decomposition process.
Within various frequency recombination methods, the archi-
tecture layout in Fig. 1 gives an example. It attaches a strong
flexibility to the whole architecture and leads to great poten-
tials in various fields. Fig. 4 gives three examples of fre-

Fig. 4. Some examples of frequency recombination.

quency recombination. The left one and the right two cor-
respond to a three-level and a four-level decomposition net-
works. We can get finer and more abundant frequency con-
figuration effect as the level increases. This is the reason why
we construct a deep convolutional network. Imagining that
if we set the network to be deep enough, an approximately
continuous frequency domain partition can be achieved. In
fact, the frequency recombination manipulation can be con-
sidered as another network since different paths exist and the
recombination can also be in operation layer by layer.

3. EXPERIMENTS

In this section, several experiments of nonlinear image ap-
proximation and denoising have been evaluated to help ex-
plore and demonstrate properties of the proposed scheme.

3.1. Nonlinear Approximation

First, we compare the nonlinear approximation (NLA) perfor-
mance of the wavelet, contourlet transform and proposed net-
work. In these NLA experiments, for a given valueM , we se-
lect the M -most significant coefficients in each transform do-
main, and then compare the reconstructed images from these
sets of M coefficients.

We choose six gray scale images in size of 512 × 512 or
256 × 256 for testing. We choose the 3% most significant
coefficients for approximation on each image. The results
are given in Table. 1. In five images, the proposed structure
achieves the best performance among the three methods. Es-
pecially in barbara and fingerprint, there is a significant gain
of 0.48 dB and 0.71 dB in peak signal-to-noise ratio (PSNR),
respectively.

Fig. 5 shows a visual effect on the barbara image, where
the PSNR values of the three reconstructed images are 26.03
dB, 26.46 dB and 26.92 dB, respectively. It indicates that
the proposed network outperforms the other two transforms,
especially the directional textures on cloth.

For more evidence, we repeat the nonlinear reconstruc-
tion process using different percentage of coefficients which
ranges from 1.4 to 5.0. As shown in Fig. 6, the reconstructed
images by the proposed network have consistently higher
PSNR compared to wavelet and contourlet transforms. An-
other observation is that the gap between contourlet and the
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(a) Original image (b) Wavelet NLA

(c) Contourlet NLA (d) Proposed NLA

Fig. 5. Nonlinear approximation by the wavelet, contourlet
and proposed methods. (a) is the original image. (b), (c) and
(d) show the reconstructed images from the 6553-most signif-
icant coefficients.

Table 1. PSNR of reconstructed image of different transforms
PSNR(dB) wavelet contourlet proposed

barbara 26.03 26.46 26.92
cameraman 26.39 25.92 26.58

peppers 32.19 32.35 32.56
fingerprint 21.68 22.01 22.72

lena 31.53 31.01 30.60
baboon 22.03 22.09 22.43

proposed transform gets larger as the percentage of coeffi-
cients increases. It implies that the convolutional network has
a more obvious superiority if more coefficients are involved.

3.2. Denoising

Similar to approximation, denoising can also be achieved
based on keeping the most significant coefficients. A sim-
ple thresholding scheme on the decomposition coefficients is
used in experiments to make denoising. Likewise, we use the
same six test images and the results are given in Table. 2.

An observation is that the proposed method outperforms
wavelet and contourlet transforms in general since the PSNR
values rank top in five test images. Furthermore, more sig-
nificant improvement is achieved in barbara and fingerprint.
This strengthen the fact that our deep convolutional network
has an especially great performance on images with much de-
tails.
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Fig. 6. Comparison of nonlinear approximation using
wavelet, the contourlet and the proposed transform . A se-
ries of coefficients are chosen. Upper left: barbara. Upper
right: cameraman. Bottom left: fingerprint. Bottom right:
baboon

Table 2. Comparison of various methods in denoising
PSNR(dB) noisy wavelet contourlet proposed

barbara 22.95 24.84 25.12 25.69
cameraman 21.81 25.33 25.49 28.41

peppers 23.08 28.17 28.20 32.56
fingerprint 20.71 21.25 21.29 22.76

lena 24.04 28.22 28.38 28.23
baboon 21.65 22.54 22.81 22.92

4. CONCLUSIONS

In this work, we construct a new invertible deep convolu-
tional network for image representation. What makes our net-
work stand out of other methods mainly lies in two aspects.
First, instead of iterating decomposition on every low fre-
quency part and leaving the high frequency parts unchanged,
we provide a more reasonable and flexible frequency parti-
tion scheme which enables frequency redistribution in vari-
ous parts. The second contribution is its efficient and sim-
ple implementation by using iterated directional filter banks
which allow an invertible access. Furthermore, by adjoining
a frequency recombination process, the architecture indicates
a promising future in various image processing applications.
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